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In these slides we will discuss principles and insights into building effective machine 
learning models for tabular datasets. This will include defining “tabular data” as well 
as the challenging notions of what trustworthy and insightful machine learning means. 
Consistent with claims from researchers like Cynthia Rudin, we show that 
state-of-the-art performance is usually achievable, or very nearly so, with intrinsically 
interpretable prediction algorithms.



What is Tabular Data?

Not precisely defined, but roughly …

● Ceteris Paribus (defn): Latin phrase meaning “holding other things 
constant”

● Tabular Data Condition: Dataset where each feature has meaningful ceteris 
paribus relationships with the outcome

● Examples: disease severity features are tabular data, pixel intensities are not
● Can be assessed with Ceteris Paribus Plots. Tabular data models have “well 

behaved” ceteris paribus plots.

Tabular data is not precisely defined. But an intuitive and rough definition uses the 
concept of ceteris paribus: a Latin phrase meaning “holding other things constant”. 
Then the tabular data condition is a dataset where there is inherent interest in each 
model input feature, and those input features all have a meaningful ceteris paribus 
relationships with the outcome. Later we will introduce ceteris paribus plots to further 
clarify this concept. Tabular data models will have “well behaved” ceteris paribus 
plots. Examples of tabular data features include disease severity, lab results, 
demographic characteristics, and imaging summary measures. Raw image files 
containing pixel intensities or free form text data are not usually considered tabular 
features.



Most of us are drawn to COMPLEXITY
When we started in machine learning (a long long time ago) we had very different ideas 
about predictive modeling!

● The world is complex, hence the most accurate ML models should be too
● For intrinsic interpretability, decision trees or other logical models are the way to go

● Additive Models are somewhat less interpretable than Decision Trees and 
generally less accurate than complex Blackbox Models

Since the world is complex, it is very natural to assume that the most accurate 
machine learning models are also complex. Furthermore, if we desire intrinsic 
intepretability, the best models are decision trees or other logical models. Additive 
models are often considered less interpretable than logical models and less accurate 
than complex blackbox models.



Conventional Wisdom on Interpretability:
Logical Models vs Tree Ensembles

From Leo Breiman’s Two Cultures Paper:

● On interpretability, trees rate an A+

● So forests are A+ predictors. But their mechanism for producing a prediction 

is difficult to understand. Trying to delve into the tangled web that generated a 

plurality vote from 100 trees is a Herculean task. So on interpretability, they 

rate an F

The specific conventional wisdom on interpretability of logical models vs tree 
ensembles is nicely described by Leo Breiman in his famous Two Cultures paper. 
Logical models such as trees rate an A+ and blackbox models such as tree forests 
rate an F. In this presentation we re-examine these assumptions to see if they 
continue to hold up. There may be a few surprises in store!

https://projecteuclid.org/journals/statistical-science/volume-16/issue-3/Statistical-Modeling--The-Two-Cultures-with-comments-and-a/10.1214/ss/1009213726.full


What about Logical Models?
Decision Tree Decision List

Decision Set

Logical models are widely considered highly interpetable
Interpretable Principles and 10 Grand Challenges, Cynthia Rudin

Let’s start with logical models. There are a number of variants, including decision 
trees, decision lists, and decision sets. For more information see the nice summary 
paper: Interpretable Principles and 10 Grand Challenges, by Cynthis Rudin. These 
are widely considered to represent the apex of intrinsic interpretability.



Must Be Sparse or Features Become Hopelessly Entangled!

https://www.interpretable.ai/solutions/loan-default-risk/

A Loan Default Example

However, as many have noted, logical models these must be very sparse in the 
number of input features or their impacts on predicting outputs become hopelessly 
entangled! Here we see a number of features appearing multiple times in completely 
different parts of the tree. This makes it difficult to assess their net effect on model 
outputs.



CORELS Recidivism Decision List

● This rule is very sparse and easy-to-deploy

● Only slightly worse performance than the most sophisticated black box models

● Note: need to assume for the purposes of illustration that risks for this outcome 

measure, dataset, etc. are appropriate for its intended use

Stop explaining black box machine learning models and build interpretable models instead, Cynthia Rudin

So logical models should be sparse and parsimonious in terms of the number of 
conditions. Here’s a nice example known as the CORELS algorithm for prediction of 2 
year recidivism. It’s an impressively sparse algorithm using only three features–age, 
gender, and number of prior offenses–and it’s very easy to deploy.



But is it really Trustworthy?

Everything else being equal (Ceteris Paribus), expect to have same or higher risk for
● Lower age
● Male
● More priors

Stop explaining black box machine learning models and build interpretable models instead, Cynthia Rudin

But is it really trustworthy? For sensible predictions we would expect to have the 
same or higher risk, everything else being equal (i.e. ceteris paribus), with lower age, 
male gender, and more priors. It is possible that this intuition for trustworthiness is not 
correct, but at the very least we should easily be able to assess if such constraints 
hold and if not we would want to investigate that further before deploying such a 
decision rule.



Need Different Representation to Evaluate 
Trustworthiness: E.g. Ceteris Paribus Plots

Surprisingly, does NOT appear TRUSTWORTHY!
1. Females with 2-3 priors predicted to have less risk when 

younger. Unless explained, not trustworthy for this group
2. Sparse rules necessarily also exhibit Dichotomania. Not 

trustworthy “around” such cutoffs

Females with 2-3 priors

To assess trustworthiness we actually need a different representation of the prediction 
algorithm. Listing the rules in the logical model is not insightful. Instead we need 
ceteris paribus plots that show the impact of changing a single feature (shown on the 
x axes) while keeping the other features fixed. The different lines in the plots are for 
different combinations of features not being varied along the x axes. Surprisingly, the 
CORELS algorithm does NOT appear trustworthy! Females with 2-3 priors are 
predicted to have less risk when younger than older females who have the same 
number of priors. Unless this is explained, predictions for this group should not be 
considered trustworthy and such behavior is not transparent from the simple 
formulation of the model used to make the predictions. Furthermore, sparse rules 
necessarily also exhibit “dichotomania” in that small changes in a feature value can 
lead to an unreasonably large changes in predictions. For example, there are abrupt 
changes in predictions between ages 20 to 21 and 23 to 24. Subjects with birthdays a 
mere few months of these transition ages would have vastly different predictions 
depending on slight changes in age. These arbitrary prediction instabilities would 
have undesirable big consequences if such a rule were actually used in a setting such 
as parole determination.



Objective: Want to predict Y from p features, X = (X1, X2, …, Xp)

g-1(β0 + F1(X1) + F2(X2) + … + Fp(Xp))

Additive Models for Tabular Data

Inverse link Univariate Transformations

…

Generalized Additive Model

So as an alternative to logical models, let’s consider additive models. These can be 
quite general since each feature value can be transformed independently of the other 
feature values. Furthermore, the additive sum of the transformed features, i.e. the 
total additive scores, are input to a univariate inverse link function to obtain the final 
predicted output. For continuous outcomes the link function is usually the identity and 
for binary outcomes the link function is the logit transformed probability. While additive 
models can accommodate arbitrary numbers of interactions, this adds to model 
complexity and unless stated otherwise, we will assume there are no interactions and 
the model is directly additive in the features.



Additive Models Set The Gold Standard
for Interpretability

● Effects are fully disentangled and can be visualized
● Ceteris paribus relationships are clear
● “Interpretable” is not the same as “Trustworthy”:
● It allows decision makers to assess trustworthiness

Total Score = Intercept + Prior Score + Age Score + Juvenile Score
Probability = g-1 ( Total Score ) = eTotal Score / (1 + eTotal Score)

This shows an example of an additive model for the same Compass dataset. It uses 
three features: age, the number of priors and the number of juvenile crimes 
committed. Each of these features has a corresponding component function that 
maps the input feature into a score. The feature scores are then summed and an 
overall intercept is added to obtain a Total score. This total score is then transformed 
via the inverse link, here the anti-logit, to obtain the predicted probability of recidivism 
in 2 years. One can immediately assess properties such as monotonicity in the input 
features. Here we see the model predicted probabilities increase as a function of 
number of priors and juvenile crimes with the increase stabilizing at approximately 15 
priors and one juvenile crime. The function also increases for younger subjects. Also, 
the model does not exhibit dichotomania in the influence of features. Feature scores 
change gradually with changes in the input features. Hence we can immediately see 
that the model satisfies the basic expectation for a trustworthy model that we 
described before.

Since the effects in an additive model are fully disentangled the impact on model 
outputs can be meaningfully visualized and quickly assessed for trustworthiness. 
Hence the ceteris paribus relationships are clear. Also note that interpretable is not 
the same as trustworthy. Additive models are intrinsically interpretable and can be 
assessed for trustworthiness but they need not automatically be trustworthy: the 
component functions will identify potential problems with the model. Based on these 
considerations we consider additive models to set the gold standard for 
interpretability.



Additive Models Have State-of-the-Art Performance
Interpret ML from Microsoft Research

FICO Explainability Challenge
(Cynthia Rudin)

Cynthia Rudin

Is there a price to pay in performance for such clear interpretability? Surprisingly, a 
considerable body of empirical evidence suggests not! The top right results from 
Microsoft Research shows that explainable boosting machines, which train a type of 
additive model has state-of-the-art performance across a number of public datasets. 
In fact, on those datasets even simple logistic regression has optimal or near optimal 
performance. Similarly on the FICO explainability challenge, Cynthia Rudin showed 
that a version of logistic regression that allowed nonlinearity in the feature 
components via binning has near optimal performance as well. Christodoulou, in the 
figure shown in the top left, conducted a literature review and found that on average 
all machine learning methods, including logistic regression, performed similarly with 
the exception of decision trees which were found to have a substantially lower 
performance on average. In particular, additive models not only have greater 
interpretability, but they have better performance than trees, while maintaining 
comparable performance to other machine learning methods. These results are 
consistent with our experience on a variety of datasets.



Interpretable Machine Learning:
Fundamental Principles and 10 Grand Challenges
(Cynthia Rudin)

● Additive Models often work well with existing standard approaches

● But the paper identifies gaps and areas to improve for even broader applicability

So additive models have gold standard interpretability and optimal or near optimal 
performance across a broad range of applications. But as illustrated in this paper by 
Cynthia Rudin, there are some remaining questions for how to build additive models 
that can further optimize their performance for even broader applicability. These are 
covered next …



Impose Flexible Constraints for TRUST

Additive models are interpretable, but not 
necessarily trustworthy

● Incorporate prior knowledge?
● Smoothness? Monotonicity?
● Minimal complexity?

○ No unnecessary “wiggliness”
○ Even no unnecessary “curvature”

● Flexibility for custom considerations?

Interpretable Principles and 10 Grand Challenges, Cynthia Rudin

“Interpretable models do not necessarily create or enable trust–they could 
also enable distrust. They simply allow users to decide whether to trust 
them. In other words, they permit a decision of trust, rather than trust itself.” 

The first challenge for additive models is how to impose flexible constraints for trust. 
As noted by Cynthia Rudin, interpretable models are not necessarily trustworthy. 
Instead they allow us to evaluate and examine whether the model should be trusted. 
In order to ensure the additive models are trustworthy, it is desirable to have methods 
of imposing constraints on the component functions. This could be based on prior 
knowledge and account for whether they should be smooth, monotone, avoid 
unnecessary inflection points (extraneous “wiggliness”) or even custom 
considerations such as a discontinuous change point at a feature value.



Remove Unnecessary Features for SPARSITY

Feature sparsity facilitates model troubleshooting, 
ease-of-deployment, and maintenance

“Everything should be made as simple as possible, but no simpler”

Albert Einstein

The second challenge is to remove unnecessary features from the fitted prediction 
model. Having a sparse set of features facilitates model troubleshooting, 
ease-of-deployment, and model maintenance.



UC Business Analytics R Programming Guide

Deep Learning Machine

Exploit Strong Learning Methods
“We remark that GAMs have the advantage that they are very powerful, particularly if 
they are trained as boosted stumps or trees, which are reliable out-of-the-box machine 
learning techniques … However, sparsity and smoothness are hard to control.” 
(emphasis added)

To make it even more challenging:
Can we leverage the strength of any strong learner?

Interpretable Principles and 10 Grand Challenges, Cynthia Rudin

Finally, can we exploit the strength of machine learning approaches such as boosting 
for extra performance while having flexible approaches to imposing constraints for 
trust and removing unnecessary features for model sparsity? Furthermore, can we 
leverage the approach using any strong learner without building a whole new 
algorithm? As noted by Cynthia Rudin, this can be challenging to do while maintaining 
the desire for sparsity and flexibility to impose constraints for trustworthiness.

http://uc-r.github.io/


Strong Learner Rough Model Select Features Polished Model

Desirable performance + Interpretability + Sparsity + Trustworthiness

Model Sculpting

Purpose: Model sculpting is a machine learning pipeline that takes as input a strong learner and 
outputs an interpretable, trustworthy, and sparse model (usually) with the same performance. The 
method is based on easy-to-implement mathematical approximation to the base learner and is extremely 
flexible, fast, and visually insightful.

We propose to solve this challenge using a method called model sculpting. This is a 
machine learning pipeline that takes as input a strong learner, such as an XGBoost 
trained prediction model with desirable performance. Then an initial additive model 
that most closely approximates the input strong learner is extracted and called a 
rough (additive) model. Features are then selected using a directly interpretable 
variable importance measure. Finally, the additive model components for the selected 
features are potentially adjusted, e.g. via smoothing and/or shape constraints to 
obtain the final polished model. Note that the initial strong learner need not be a 
blackbox model; it can be any model that has the desired performance.



Ceteris Paribus Plots for an XGBoost Model: 
Compass Dataset

● Also known as Individual Conditional Expectation (ICE) plots
● Strong Learner: XGBoost was used to create a model
● Use log odds scale for model sculpting since the outcome is binary

To extract the rough model, we start with ceteris paribus plots. These plots show the 
strong learner predictions varying one feature at a time, labeled on the x axis, while 
holding the other features constant. Various combinations of values for the other 
features lead to different lines in these plots. For the purposes of model sculpting we 
usually select these combinations of feature values randomly from the values seen in 
the training set and doing this independently for the various features. We also refer to 
this as sampling from the product marginal dataset, which has the same marginal 
distributions for the features as the original training dataset with input features made 
to be independent of each other. A common alternative is to keep the between feature 
correlations and sample at random from the training dataset.

When the outcome predictions are probabilities, as is the case here with the Compass 
dataset, the predictions are plotted on log odds scale when extracting the rough 
model. Finally, we note that these ceteris paribus plots are also frequently referred to 
as Individual Conditional Expectations (ICE) plots.



Extract A Rough Model from the Strong Learner

● Rough Model: Simple average of the centered individual ICE profiles

Next, we center the ceteris paribus profiles by subtracting off their mean values and 
take the mean across the sampled centered lines. These form the component 
functions for the additive rough model. To complete that model, an average prediction 
across a sample from the product marginal (or training if using the non default 
alternative) dataset to obtain the overall intercept. Note the consistency between the 
centered ICE profiles, suggesting that the original strong learner is nearly additive.



Rough Model Approximation to the Strong Learner

Additive model predictions are excellent throughout the feature space

An alternative way to assess additivity is to plot the strong learner probability 
predictions vs the extracted rough model probability predictions. As expected from the 
centered ICE plots, the additive rough model is an excellent approximation to the 
original strong learner, with R2s of 0.97 on the product marginal and training datasets. 
Even though tree ensembles like XGBoost trained models can be extremely complex, 
in principle, we see here that this need not be the case. In fact, it is our experience 
that in most cases well trained blackbox models actually are approximately additive 
models at the individual prediction level.



Select Features for the Polished Model (Log odds scale)

Select

Prune

Left panel: Direct Variable Importance = Variance of feature terms
Right panel: Cumulative R2 for prediction of full rough model using top features

Product marginals Train set

Next we examine what features drive predictions from the rough model. The left 
panels show the variance of the rough model component function scores, which we 
call the direct variable importance. These represent the variances of the individual 
component values. The features are then sorted by their direct variable importance 
and for the right panel we show cumulative R2 for how well the sequence of 
submodels approximates the full rough model. The top number of 68.1% represents 
the R2 for the model containing only the most important feature, in this case priors. 
The predictions for these submodels “zero out” features that are not selected by 
setting the component functions for those features to 0. For the Compass dataset, by 
the time three features are included–priors, age, and juvenile crimes–the submodel 
approximates the full rough model with an R2 of over 98% on the product marginal 
dataset. There were similar results on the training dataset, with an identical ordering 
of features and nearly identical approximation R2 with the same top 3 features.



Select Features for the Polished Model (Probability Scale)

Select

Prune

Left panel: Direct Variable Importance = Variance of feature terms
Right panel: Cumulative R2 for prediction of full rough model using top features

Product marginals Train set

The previous slide based direct variable importance on the component functions, 
which is equivalent to calculating variability using the individual ceteris paribus plots 
on the log odds scale. Since original scale prediction probabilities are generally more 
interpretable, we can also obtain a version of direct variable importance from these 
probabilities instead of log odds. To do that we obtain individual ceteris paribus plots 
for a sample of feature combinations and obtain the variance of the probability 
predictions of each line in the sample. Since the model is additive on the log odds 
scale and generally not additive on original probability scale, these variances are no 
longer the same across the different ceteris paribus lines. Therefore we now get 
multiple points for each feature in the left panel. An overall mean across those 
different variances per feature is also plotted and used to sort the features. Then 
cumulative approximation R2s are shown again in the right panels. Even though the 
left panels are now different from before, we end up with the same ranking of features 
and corresponding cumulative R2s. Again, the same top 3 features are selected.

This version of the direct variable importance plot generalizes the previous version 
since the model on the original scale is no longer additive–it is additive on the log 
odds scale only. Interestingly, this also easily generalizes to any blackbox model! For 
that you again plot individual ceteris paribus line variances of the predictions to 
construct the left panel and use the simple mean summary to sort the features. To 
“zero out” the effect of features not selected, simply set those features to a 
reasonable constant value, e.g. their mean or mode in the case of discrete features. 
This generalized version retains the direct interpretation since it still represents a 
measure of how variable the ceteris paribus plots are when individual features are 



varied.



Beware of Rashomon Effects!

Rashomon explored the theme of having multiple 
subjectively valid viewpoints of the same events

Rashomon Effect in Machine Learning: Leo Breiman 
observed there are many models, potentially using different 
sets of features, with nearly optimal generalization error

Implication: There is no unique set of drivers of the data, only a set of drivers for a specific model.

There is a difference between explaining a specific model and explaining the data
● Direct variable importance explains a specific model
● There may be other combinations of variables that drive predictions for alternative models

Note that in interpreting variable importance we should be aware of Rashomon 
effects. This term refers to a classic movie that explored the theme of having multiple 
subjectively valid viewpoints of the same events. Leo Breiman coined the use of this 
term in machine learning where it refers to the observation that there are many 
models with different combinations of selected input features with nearly identical 
performance. This is caused by joint correlation amongst the input features and output 
being predicted. The implication is that there is not usually a single set of drivers of 
the data, only a set of drivers for a specific model. So there is a difference between 
explaining a specific model and explaining the data. Since the direct variable 
importance works with a single model and examines impacts on predictions by 
systematically varying individual features, one at a time for that model, it is explaining 
the model not the data. Explaining the data and fully understanding all possible 
combinations of features that drive predictions is a considerably more difficult problem 
and noted as one of the fundamental challenges of interpretable machine learning 
according to Cynthia Rudin. For practical purposes, we address explaining the data in 
a pragmatic ad hoc way in an additional step by deliberately including and excluding 
particular combinations of features and seeing what happens to overall model 
performance for such newly trained models. This can help explore if there are sets of 
features that might be masking the impact of other features as well as assessing the 
value added of a group of novel features.



Optionally Smooth Component Functions
● Extraction of the Detailed Model guided by three considerations:

○ Prior knowledge
○ Less shape complexity is generally preferred

● Manual extraction of individual features is OK

After extracting the rough additive model and selecting features we optionally modify 
some or all of the component functions. In this step we impose trustworthiness, as 
needed, based on prior knowledge. E.g. we can smooth the components and/or 
impose shape constraints such as monotonicity. In this case, we use a smoother and 
note that shape constraints are not needed since we already have desired 
monotonicity for the three selected features: age, priors, and juvenile crimes.



The Final Polished Model!
Final model components for the selected features

● Prior knowledge
● Smoothing

We now have the final polished model! The component function for age is 
monotonically decreasing and juvenile crimes and priors are both increasing.



Where is the Data?

To further understand the models we can also plot bivariate densities of each feature 
and their corresponding predictions for the training dataset observations. Then we can 
superimpose percentiles of the ceteris paribus lines ranked according to their overall 
height. This will provide a good understanding of where the data and predictions lie in 
the dataset and which regions of feature space have a dearth of data. We see that 
most data is in an L shape for either relatively low predicted probabilities or low ages. 
Outside that region there is relatively little data we might wish to be cautious with 
predictions in that region, but this should be relatively rare. We also see that virtually 
all subjects have 3 or fewer juvenile crimes and therefore the predicted flat ceteris 
paribus lines for greater values occur very rarely. It is likely that if we had a 
considerably larger dataset from this population that the predictions would continue to 
increase for larger numbers of juvenile crimes, but since the number of such 
observations is relatively rare in the training dataset, XGBoost sensibly avoids wild 
extrapolations and limits the impact on predictions in that region of feature space. The 
same occurs with the number of priors which flattens at about 10.

We note, again, that this plot can easily be generalized and used for blackbox models. 
In that case, ceteris paribus lines can cross and their ranks and percentiles are no 
longer uniquely defined. Instead plot a random sample of ceteris paribus lines.



Can also use XGBoost to Directly Train Additive Models

XGBoost can also be used to directly train additive models. One of the training 
parameters is the maximum fraction of variables per tree and when this is set so that 
only one feature is allowed per tree that model is necessarily additive. Here this is 
done for the Compass dataset and we see that the component functions are nearly 
identical to those obtained with model sculpting. In other examples there are larger 
differences between the model sculpting based component function and a direct 
additive model fit using XGBoost. For that reason, we routinely use both the indirect 
model sculpting and the direct XGBoost additive modeling approaches and compare 
performance.



Calibration Plots on the Test Set

Calibration plots show smooths of the outcomes vs the predictions. Identity lines at 45 degrees going 
through the origin represent perfect calibration

● All models well calibrated
● All models have similar R2s

Calibration plots assess if there are systematic biases in the predictions. Ideally we 
want many observations with a particular prediction, say 50%, to have a true mean 
value of outcomes to also be 50%. These plots assess this on the test dataset for our 
various models. The ideal calibration line is the dashed line which is a 45 degree line 
through the origin. All models are well calibrated here.



Model Performance

Model
Training Set (Resampled) Test Set

R2 DI MI R2 DI MI

XGBoost 0.150 0.153 0.003 0.147 0.153 0.006

Rough 0.147 0.152 0.005 0.154 0.158 0.004

Polished 0.149 0.154 0.005 0.158 0.163 0.006

Direct 0.146 0.151 0.006 0.156 0.162 0.005

Model
Training Set (Resampled) Test Set

R2 DI MI R2 DI MI

XGBoost 0.113 0.116 0.003 0.112 0.117 0.006

Rough 0.112 0.116 0.004 0.118 0.121 0.004

Polished 0.113 0.117 0.004 0.120 0.125 0.006

Direct 0.111 0.115 0.005 0.119 0.124 0.005
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See this blog for log loss based metrics

We look at model performance for binary outcomes using two loss functions: 
quadratic loss and log loss. Quadratic loss is the same as squared error and log loss 
is also known as cross entropy. Based on these loss functions we can look at R2. 
Furthermore, after recalibrating the predictions we can also recalculate R2 to obtain 
what we call a Discrimination Index (DI). Finally we subtract the Discrimination Index 
from R2 to obtain a Miscalibration Index (MI). We see here that the polished model 
has the same or better performance as the other models, including the original 
XGBoost model.

See the linked blog for details on these metrics.

https://stats4datascience.com/posts/three_metrics_binary/


Test Set Predictiveness Curves for the Polished Model

See the Stats4phc R package here

Here we show our final performance visualization that we find useful and applies to 
probabilistic prediction models. The line in purple shows the estimated risk as a 
function of risk percentile. It is called a predictiveness curve and is estimated here 
using the calibration curves plotted vs the corresponding empirical risk percentiles. 
The flatter this line, the less prognostic information is available in the predictive 
model. Models with no information make a single prediction equal to the prevalence, 
leading to the flat dashed line. Cumulative versions of the predictiveness curve 
represent PPV, when cumulating down from maximum risk percentile, and 1-NPV, 
when cumulating up from the 0 risk percentile. The PPV and 1-NPV converge to the 
horizontal prevalence line on the left and right, respectively. For more information and 
code, see the Stats4phc package linked in the slide.

Also included on this plot are the PPV and 1-NPV for the CORELS algorithm. 
Interestingly we see that the CORELS algorithm has performance equivalent to the 
polished model at one operating point. Since the algorithm does not generate 
probabilistic predictions, it does not have the flexibility to choose different operating 
points, as might be desired for different decision makers using this algorithm.

https://genentech.github.io/stats4phc/main/


Try Standard Linear Models as Well!

See this blog for log loss based metrics

Model
Training Set (Resampled) Test Set

R2 DI MI R2 DI MI

Polished 0.146 0.151 0.006 0.156 0.162 0.005

Logistic 0.138 0.146 0.008 0.145 0.168 0.023

Ridge 0.136 0.145 0.010 0.144 0.169 0.025

Lasso 0.123 0.146 0.023 0.142 0.169 0.027

Elastic Net 0.119 0.148 0.029 0.132 0.169 0.037

Model
Training Set (Resampled) Test Set

R2 DI MI R2 DI MI

Polished 0.111 0.115 0.005 0.119 0.124 0.005

Logistic 0.102 0.111 0.009 0.109 0.130 0.021

Ridge 0.101 0.111 0.009 0.110 0.132 0.022

Lasso 0.092 0.111 0.019 0.108 0.131 0.023

Elastic Net 0.089 0.113 0.024 0.100 0.131 0.031
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For a more complete analysis, it is important to try standard linear modeling 
approaches as well. In this case we see that the polished model appears to have 
slightly better performance than the various traditional and penalized regression 
approaches. This appears to be driven primarily by the excellent calibration of the 
polished model.

https://stats4datascience.com/posts/three_metrics_binary/


Two Surprising Conclusions for Logical Models

Conclusion 1:

Logical models are fundamentally flawed for interpretability since their 
building blocks are feature entanglements. They are often also untrustworthy 
and their structure inherently makes this difficult to rectify.

Conclusion 2:

Tree ensembles have an emergent property so they often behave more like 
additive models than their constituent trees. This structure is revealed by 
model sculpting, making them more interpretable and insightful than trees.

Summarizing our various observations, we find first, that logical models are 
fundamentally flawed for interpretability since their building blocks are feature 
entanglements. Furthermore, trained logical models often contain untrustworthy 
elements and their structure inherently makes this difficult to fix. Second, tree 
ensembles surprisingly have an emergent property that makes them behave more like 
additive models than their constituent trees. This structure is revealed by ceteris 
paribus plots and model sculpting, making them more interpretable and insightful than 
single trees. Therefore somewhat shockingly, at least for us, is that neither 
assumption of Leo Breiman’s conventional wisdom on interpretability actually holds 
up. Of course, the state of the art performance of tree ensembles that he developed 
and popularized have held up well which is why we often use a tree ensemble as the 
strong learner to start the model sculpting process.



What if the additive model is not sufficient?

If best efforts at additive modeling still are not adequately close to a blackbox model:

● Heavily use ceteris paribus plots to understand the blackbox model
● Ensure that individual ceteris paribus lines behave reasonably by imposing 

constraints. E.g. XGBoost and Lightgbm both have excellent facilities for imposing 
monotonicity constraints. Can also ensure piecewise monotonicity such as an 
umbrella ordering:

○ Make copies of feature, one for each piece.
○ Zero out feature values that are not in the piece represented by the subfeature.
○ Include feature values at the split points into both adjacent parts
○ Impose the desired monotonicities separately on each subfeature.

● Make sure good faith effort was put into additive modeling approaches! We 
recommend at least: standard linear modeling approaches (traditional and 
penalized regression), direct additive tree ensembles, and model sculpting

If best efforts at additive modeling are still are not adequately close to blackbox model 
performance, we could consider the following and using a (potentially modified) 
blackbox model.

First, make sure to make heavy use of ceteris paribus plots to understand the 
blackbox model. Although popular, we do not think such methods are used enough.

Second, ensure that individual ceteris paribus lines behave reasonably. We look for 
similarity in shape and minimal or minor crossing of the individual lines, which is nicely 
automatic with models that are additive after a monotone transformation of the 
predictions. We also recommend imposing shape constraints such as monotonicity of 
the ceteris paribus lines. In some cases, a weaker version called piecewise 
monotonicity may be desired. This piecewise monotonicity partitions the feature 
values into pieces and monotonicity in potentially different directions can be forced. 
For example, we may want monotone decreasing predictions until a feature cutpoint, 
C, after which the predictions are monotone increasing. To do this we replace the 
feature with subfeature, one for each of the pieces. Then values outside of the piece 
that the subfeature represents are zeroed out. To ensure continuity we make sure to 
include the cutpoints defining the features appear as non zero values in both 
subfeatures bordering the cutpoint. Retraining the tree ensemble with appropriate 
subfeatures and monotonicity constraints will then ensure piecewise monotonicity.

Third we emphasize the importance of making a good faith effort at additive modeling 
approaches! In most instances additive models have optimal or near optimal 



performance so we need to make sure non additive blackbox models are really 
necessary before introducing such complexity.



Summary: We ended far from where we started!

Additive Models

Model Sculpting

Logical Models

● Complete feature disentanglement makes additive models the gold standard for interpretability
● Usually have state-of-the-art performance

● Flexible, simple, and highly visual machine learning pipeline
● Turns strong learners into powerful, interpretable, trustworthy, and sparse models

● Fundamentally flawed for interpretability due to inherent feature entanglement in their building blocks
● Tree ensembles behave more like additive models than their constituent trees

Model sculpting R package and Model sculpting workflow example

We end up with quite a different perspective from where we started!

We showed that additive models provide excellent gold standard interpretability, often 
with state-of-the-art performance. Direct and indirect ways of using the power of tree 
ensembles to construct additive models were introduced. Direct models use simple 
options in modern tree ensembles to ensure a single feature per tree is used and the 
indirect method of model sculpting extracts closest additive model approximations to 
strong learner blackbox models. Model sculpting techniques can be used to flexibly 
select features to ensure parsimony and constraints on shape for trustworthiness. 
Use of ceteris paribus plots showed, surprisingly, that tree ensembles are often simple 
additive models in disguise. Finally we also note that logical models are 
fundamentally flawed for interpretability due to inherent feature entanglement in their 
building blocks. With ceteris paribus plots and model sculpting we see that tree 
ensembles are often more interpretable than individual trees.

https://github.com/Genentech/modsculpt
https://github.com/Genentech/modsculpt_example


Backup



Geographic Atrophy (GA) Progression Modeling Objective

GA Progression is assessed by lesion growth rate over 
time in Fundus Autofluorescence (FAF) images as 
the primary endpoint in a clinical trial
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● Endpoint in GA trials: GA progression as defined by a growth rate in GA area

● Objective: Develop model(s) that predict the primary endpoint using baseline 
information. Use the model(s) to improve trial power via covariate adjustment

Code to generate these examples is here

The backup slides show an example where we build a model to predict progression of 
Geographic Atrophy.



Ceteris Paribus Plots for an XGBoost Model for GA

● Also known as Individual Conditional Expectation (ICE) plots
○ Vary one feature holding all others constant
○ (In some versions they are then centered)
○ Other features can be independently selected from the product marginal distribution



Extract A Rough Model from the Strong Learner
● Rough Model: Simple average of the centered individual ICE profiles



Rough Model Approximation to the Strong Learner

Additive model predictions are excellent throughout the feature space!!!



Select Features using Direct Variable Importance

Left panel: Direct Variable Importance = Variance of feature terms
Right panel: Cumulative R2 for prediction of full rough model using top features

Select

Prune



Obtain Final Polished Model
Final model components for the selected features

● Prior knowledge
● Smoothing

“The sculpture is already complete within 
the marble block, before I start my work. 
It is already there, I just have to chisel 
away the superfluous material.”

–Michelangelo



Where is the data?



Can also use XGBoost to Directly Train Additive Models



Model Performance

For more on these performance metrics, see “Everything you wanted to know about R2 but were afraid to ask”

Model
Training Set (Resampled) Test Set

R2 DI MI R2 DI MI

XGBoost 0.251 0.263 0.012 0.212 0.232 0.021

Rough 0.245 0.263 0.018 0.197 0.218 0.020

Polished 0.245 0.262 0.017 0.216 0.218 0.002

Direct 0.244 0.258 0.015 0.207 0.223 0.016

https://stats4datascience.com/posts/three_metrics/


Calibration Plots on the Test Set

Calibration plots show smooths of the outcomes vs the predictions. Identity lines at 45 degrees 
going through the origin represent perfect calibration

● All models well calibrated



Do not forget simpler benchmark models!

Unselected polished model components are identically 0 and not shown



Benchmark Model Performance

Note how well the linear models work here!

Model
Training Set (Resampled) Test Set

R2 DI MI R2 DI MI

Polished 0.245 0.262 0.017 0.216 0.218 0.002

Linear 0.250 0.268 0.018 0.221 0.223 0.002

Lasso 0.248 0.263 0.014 0.222 0.223 0.001

Ridge 0.250 0.264 0.014 0.222 0.222 0.001

Elasticnet 0.248 0.267 0.019 0.222 0.223 0.001



Calibration Plots Test Set

Calibration plots show smooths of the outcomes vs the predictions. Identity lines at 45 degrees 
going through the origin represent perfect calibration

● All models well calibrated
● All models have similar R2s



GA Progression Decision Tree

R2 = 0.124

GA Area < 7.49 GA Area < 5.38 GA Area < 5.49

GA Area < 12.1LLD < 25

DIS to Fov < 132
Yes

Yes

Yes Yes Yes

Yes

No

No

NoNo No

● Ceteris Paribus relationships are not clear directly from the tree
● Severe Dichotomania: the more plausible smooth relationships not reflected here
● Poor performance


